Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains

نویسندگان

  • Alistair Sinclair
  • Mark Jerrum
چکیده

The paper studies effective approximate solutions to combinatorial counting and uniform generation problems. Using a technique based on the simulation of ergodic Markov chains, it is shown that, for self-reducible structures, almost uniform generation is possible in polynomial time provided only that randomised approximate counting to within some arbitrary polynomial factor is possible in polynomial time. It follows that, for self-reducible structures, polynomial time randomised algorithms for counting to within factors of the form (1 +n-@) are available either for all fl E R or for no fi E R. A substantial part of the paper is devoted to investigating the rate of convergence of finite ergodic Markov chains, and a simple but powerful characterisation of rapid convergence for a broad class of chains based on a structural property of the underlying graph is established. Finally, the general techniques of the paper are used to derive an almost uniform generation procedure for labelled graphs with a given degree sequence which is valid over a much wider range of degrees than previous methods: this in turn leads to randomised approximate counting algorithms for these graphs with very good asymptotic behaviour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Approximately Counting Colorings of Small Degree Graphs

We consider approximate counting of colorings of an n-vertex graph using rapidly mixing Markov chains. It has been shown by Jerrum and by Salas and Sokal that a simple random walk on graph colorings would mix rapidly, provided the number of colors k exceeded the maximum degree ∆ of the graph by a factor of at least 2. We prove that this is not a necessary condition for rapid mixing by consideri...

متن کامل

Some #p-completeness Proofs for Colourings and Independent Sets

We consider certain counting problems involving colourings of graphs and independent sets in hypergraphs. Using polynomial interpolation techniques, we show that these problems are #P -complete. Therefore, e cient approximate counting is the most one can realistically expect to achieve. Rapidly mixing Markov chains which can be used for approximately solving these counting problems have been re...

متن کامل

Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

We analyse the mixing time of Markov chains using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree ∆ of a vertex and the minimum size m of an edge satisfy m ≥ 2∆+1. We also show that the Glauber dynamics for proper q-colourings of a hypergraph m...

متن کامل

Adiabatic Quantum State Generation

The design of new quantum algorithms has proven to be an extremely difficult task. This paper considers a different approach to this task by studying the problem of quantum state generation. We motivate this problem by showing that the entire class of statistical zero knowledge, which contains natural candidates for efficient quantum algorithms such as graph isomorphism and lattice problems, ca...

متن کامل

2 A Rapidly Mixing Circulant Markov

We consider the problem of uniform generation of random integers in the range 1; n] given only a binary source of randomness. Standard models of randomized algorithms (e.g. probabilistic Turing machines) assume the availability of a random binary source that can generate independent random bits in unit time with uniform probability. This makes the task trivial if n is a power of 2. However, exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Comput.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 1987